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Abstract. In this two-part sequence of papers, we investigate spatio-temporal patterns of convective cloud activity and or-

ganisation. The analysis employs a machine learning (ML)-based contiguous 3D extrapolation of satellite data from multiple

sensors to simultaneously follow horizontal and vertical cloud development. Our study covers West Africa, a hotspot for in-

tense convection and severe weather. In this part, we derive seasonal and diurnal variations for convective cloud properties

during spring (March–May) and summer (June–August). Moreover, we explore the connection between the number of deep5

convective cores (DCCs) and the cloud life-cycle. For that purpose, we track the evolution of convective systems and their core

regions. More than 80 % of detected clouds contain a single convective core and persist between 1–3 hours. These isolated

clouds have an enhanced absolute cooling but weaker anvil growth and updraft strength during their growth stage than clus-

tered systems. The average difference between oceanic and continental cloud properties accounts for about 10 %. However,

we detect a high seasonal variability and a surface-specific diurnal cycle. We find long-lasting cloud clusters with more intense10

core regions over continental Africa. Within these clusters, the interaction between cores may renew convective activity. The

horizontal growth of convective clouds is about 5–10 % more intense over land in both seasons, even though convective activ-

ity over the ocean increases stronger in summer. While our results emphasise an enhanced convective activity over land, we

suggest further analysis of regional patterns of clustered convection and their hydro-climatological impact.

1 Introduction

Convective clouds substantially impact the hydrological cycle of the Earth through their radiative forcing and feedback mech-

anisms (Roca et al., 2010). Research shows that clouds may enhance climate warming. However, they are still regarded as one

of the largest sources of uncertainty for climate sensitivity studies (Chen et al., 2021). Moreover, convective clouds are major

producers of severe weather (Kukulies et al., 2021; Haberlie and Ashley, 2018). Large-scale cloud clusters, like mesoscale20

convective systems (MCSs), are responsible for extreme weather events such as hail, strong winds, and extreme precipita-
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tion (Prein et al., 2024). Due to this threat for society and nature, an accurate representation of convective clouds remains of

particular interest (Guillaume et al., 2018).

Houze Jr. (2004) defined a MCS as a convective storm complex with an axis length of 100 km and more. Typically, it consists

of a contiguous cold cloud shield composed of one or more deep convective cores (DCCs), strong vertical updrafts that merge25

the cores at higher altitudes (Zipser and LeMone, 1980), and large anvils flowing out from the region of convective activity

(Horner and Gryspeerdt, 2023). By counting the number of DCCs, we can approximate the degree of convective organisation.

Higher numbers of DCCs come along with a stronger organisation, which, in turn, enhances the potential hazard of the cluster

(Jones et al., 2024). For instance, DCCs are drivers of intense precipitation. In contrast, the stratiform anvil and cirrus canopy

produce only lighter rain (Houze Jr., 2004). The size of a DCC ranges between 10 – 100 km with an average lifetime of up30

to 1–3 h, whereas the cloud anvil can persist up to 10–20 h or longer (Chen and Houze, 1997). We observe an idealised life-

cycle that can be divided into three stages: the convective initiation (CI), the maturity phase (MAT), and the dissipation of the

cloud (Fiolleau and Roca, 2013). Deep convective cells are triggered during the CI to bring the condensate upwards. In the

maturity stage, the stratiform anvil and associated mesoscale circulation build up while deep convective cells still exist. In the

dissipation stage, deep convection stops, and the cloud slowly fades out (Houze and Hobbs, 1982). The life-cycle of an MCS35

is connected to the location, daytime and surface type (Houze Jr., 2004). Small and medium-sized MCSs over land occur most

frequently in the afternoon. This peak is associated with local thermal instability and (given the underlying surface properties

potentially) a sea breeze circulation. Over the sea, we detect a weak semi-diurnal variability caused by the thermal properties

of the underlying surface and the local circulation (Li et al., 2021). The structure and associated precipitation of MCSs differ

with the region of genesis, e.g., when comparing the tropics and mid-latitudes (Kukulies et al., 2021).40

Most of our understanding of convective clouds originates from observational data (Haynes et al., 2009). Remote sensing

instruments provide highly-resolved data that help investigate the temporal evolution of MCSs (Bacmeister and Stephens,

2011), contributing towards a more realistic representation of cloud feedback mechanisms in climate models (Chen et al.,

2021). Data from passive and active sensors are suitable for detecting convective clouds beginning from their CI (Mecikalski

et al., 2010). For passive sensors, a combination of data in the infrared (IR) spectra can be used to understand cloud-top45

signatures. While they provide a detailed view of the horizontal evolution of the cloud (Jones et al., 2023), they lack information

on the vertical cloud structure (Haberlie and Ashley, 2018). Relying only on infrared (IR) brightness temperatures as a proxy

for convective activity can lead to a misclassification of cirrus or stratiform clouds as deep convection (Kukulies et al., 2021).

In contrast, active sensors provide more detailed information on the vertical dimension (Bacmeister and Stephens, 2011).

Previous studies by Bacmeister and Stephens (2011) or Oreopoulos et al. (2017) used the radar reflectivity from active sensors50

to detect the vertical structure of hydrometeors. Nevertheless, both sensor types derive data only from a 2D perspective or for

a limited area. Following Masunaga and Luo (2016), global 3D observations could deepen the understanding of convective

clouds. However, no operating satellite provides this seamless coverage of the cloud structure.

Convective cloud detection often consists of differentiating core regions from their surrounding background (Steiner et al.,

1995). A convective feature is defined by a cold peak in its core region and an associated anvil with a warmer temperature55

(Fiolleau and Roca, 2013). Morphological characteristics, such as aspect ratio, length, width, and area, classify different types
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of convective systems (Ganetis et al., 2018). Clouds appear as moving phenomena due to diffusive, advective, dynamic, and

thermodynamic processes (Sokolowsky et al., 2024). Early studies on their life-cycle often relied on manually identifying

cloud movements (Masunaga and Luo, 2016). In recent years, the development of automated detection algorithms increased

the amount of processed data significantly (e.g., Fiolleau and Roca (2013); Feng et al. (2023); Heikenfeld et al. (2019)). Most60

of these algorithms detect individual clouds or cloud clusters before linking the identified objects from one time step to the

next (Prein et al., 2024).

Today, a variety of tools exist for cloud tracking. However, they are often limited to a specific use case. To account for

the detection of convective cores and their corresponding anvil clouds, Fiolleau and Roca (2013) developed the TOOCAN

algorithm, which works well with MCSs but shows less robust results for isolated DCCs (Sokolowsky et al., 2024). Single65

convective cells undergo a more rapid dynamic development over relatively short timescales compared to MCSs (Orlanski,

1975). They are typically tracked using data from active remote sensing sensors (Haberlie and Ashley, 2018). The pioneering

work in this field is TITAN, developed by Dixon and Wiener (1993) and recently updated by Raut et al. (2021) as TINT. Feng

et al. (2023) designed the PyFLEXTRKR framework to provide a more general approach to tracking any 2D atmospheric objects

through time. Although it offers a high degree of flexibility, its application is limited to two spatial dimensions. Contrasting,70

the tobac package allows the analysis of a 4D time series (Heikenfeld et al., 2019). Data with a higher dimensionality may

offer an in-depth perspective on convective systems and their feedback mechanisms (Prein et al., 2024; Patra and Kalapureddy,

2021).

Even though convective systems have been studied for decades, there is limited knowledge on the 3D characteristics of

DCCs. Due to the absence of suitable 3D data, the impact of DCCs on the cloud life-cycle is predominantly derived from75

2D observations or simulation data (Cui et al., 2021). While active and passive sensors provide versatile information on the

horizontal and vertical cloud structure, the sensors are subject to a spatio-temporal sampling in either dimension (Masunaga and

Luo, 2016; Taylor et al., 2017). To close the data availability gap, we use a machine learning (ML) framework to extrapolate

contiguous 3D radar reflectivities from 2D sensors (Brüning et al., 2024). Our goal is to provide a detailed perspective of the

combined horizontal and vertical evolution of convective clouds and their DCCs. For each time step of 15 min, we predict80

a 3D radar reflectivity field by combining high resolution geostationary satellite imagery and the vertical cross sections of a

cloud profiling radar (CPR). The data is merged into a 4D time series. Afterwards, we employ the tobac package to identify

convective cloud trajectories within the predicted cloud field. Our aim is to compare the temporal variability of convective

cloud and core properties over land and sea. A particular interest lies in assessing the cloud life-cycle for different degrees of

convective organisation.85

We organise the article as follows. In Sect. 2, we present the data used in this study. Section 3 provides an overview of

the approach used for tracking and filtering convective clouds. We focus on the identification of isolated convective cells and

MCSs, including the detection of DCCs. Section 4 presents a statistical analysis of the results focusing on the diurnal and

seasonal distribution of convective cloud and core characteristics. Section 5 discusses the current limitations of the study and

modifications of cloud organisation over land and sea. Finally, Sect. 6 contains the summary and principal conclusions.90

3

https://doi.org/10.5194/egusphere-2025-374
Preprint. Discussion started: 5 February 2025
c© Author(s) 2025. CC BY 4.0 License.



2 Data

The area of interest (AOI) covers a region in West Africa between between 30° N–30° S and 30° W–30° E. We exclude

extra-tropical regions from the analysis due to their diverging convective development (Jones et al., 2024). The environmental

conditions in the AOI favour the development of intense convective activity (Takahashi et al., 2023). Furthermore, its heteroge-

neous landscape promotes high spatio-temporal variations in the occurrence and intensity of convective activity. Clouds with95

high convective activity, like MCSs, still challenge forecasts and risk assessments (Jackson et al., 2022; Vondou, 2012). We use

six months of data from March to August 2019 reflecting the northward shift of the Inter-Tropical Convergence Zone (ITCZ)

and the onset of the West African monsoon (WAM). The WAM substantially influences the West African climate and induces

a high proportion of the accumulated annual rainfall, leading to frequent convective activity (Andrews et al., 2024; Kniffka

et al., 2019). Our goal is to investigate the seasonality of convective clouds during the rainy season in the spring and summer,100

particularly regarding the impact of DCCs on the cloud life-cycle (Nicholson, 2018).

For this study, we use data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat-

11 (MSG) satellite (Schmetz et al., 2002). As MSG SEVIRI is centred above the Equator at 0° longitude, our AOI is close to

the nadir of the sensor. It provides measurements for 12 channels in the visible, near-infrared, and thermal-infrared spectra.

From these, 11 have a temporal resolution of 15 min and a spatial resolution of 3 km; one is a high-resolution visible channel105

with a nadir resolution of 1 km (Table 1). We apply a machine learning (ML) algorithm to predict a time series of 3D radar

reflectivities from 2D satellite data described in Brüning et al. (2024). The validation data for the ML model display vertical

cross-sections of the cloud radar reflectivity. These data originate from the 94-GHz cloud profiling radar (CPR) onboard the

CloudSat polar-orbiting satellite. The CPR is an active sensor that emits radiation pulses toward the Earth to detect vertical

profiles of cloud hydrometeors (Oreopoulos et al., 2017). It has a vertical resolution of 240 m with 125 bins and a horizontal110

resolution of 1.4 km across and 1.8 km along the track (Stephens et al., 2008). We train our model using radar reflectivities

from the level-2 2B-GEOPROF product filtered by the cloud mask quality flag (Marchand et al., 2008).

To extract training samples, we apply a spatio-temporal matching scheme to the satellite data (Taylor et al., 2017). The output

of this routine is fed into a Res-UNet, which was designed for a seamless segmentation of images of arbitrary size (Ronneberger

et al., 2015). Our studies employs the Res-UNet to predict seamless 3D cloud reflectivities with a vertical resolution of 240 m115

and a horizontal resolution of 3 km. Due to CPR signal contamination at low altitudes and a lack of sensor sensitivity at high

altitudes, the predictions are prone to lack shallow convection and ice clouds (Sassen and Wang, 2008; Haynes et al., 2009).

To account for the attenuation, we use only 100 height bins of the CloudSat data predicting radar reflectivities between 2.4

and 24 km height on a scale between -25 and 20 dBZ (Bacmeister and Stephens, 2011). The temporal resolution of 15 min

resembles the native temporal resolution of SEVIRI. While the original approach used data from 11 SEVIRI channels, we leave120

out channels with central wavelengths in the visible spectra to enable predictions at night time (Jones et al., 2023). Changes

to the configuration for the ML model, input data and reported model error (RMSE) as described in the original paper can be

found in Table 2. We detected no reduction in the model performance due to these modifications. Instead, the average error of

the model decreases from 3.05 dBZ to 2.99 dBZ. The reported error is comparable to a precision of 5 dBZ achieved by other
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Table 1. Overview of MSG SEVIRI channels (Schmetz et al., 2002).

Channel Wavelength (µm) Description Spatial resolution at nadir Retrieval at nighttime

VIS0.6 0.56-0.71 Visible channel 3 km No

VIS0.8 0.74-0.88 Visible channel 3 km No

NIR1.6 1.5-1.78 Near infrared window 3 km No

IR3.9 3.48-4.36 Near infrared window 3 km Yes

WV6.2 5.35-7.15 Upper-troposphere water vapour 3 km Yes

WV7.3 6.85-7.85 Lower-troposphere water vapour 3 km Yes

IR8.7 8.30-9.10 Mid infrared window 3 km Yes

IR9.7 9.38-9.94 Ozone sensitivity 3 km Yes

IR10.8 9.80-11.80 Clean longwave window 3 km Yes

IR12.0 11.00-13.00 Dirty longwave window 3 km Yes

IR 13.4 12.40-14.40 CO2 sensitivity 3 km Yes

HRV 0.5-0.9 High-resolution visible 1 km No

Table 2. Modifications to the Res-UNet originally proposed in Brüning et al. (2024)

Parameter Original configuration Modification

Number of input channels 11 8

Loss function L2 L1

Nighttime predictions No Yes

Average RMSE 3.05 2.99

CloudSat products (Tomkins et al., 2024). We leverage the predicted data to detect and track convective clouds. Compared to125

methods based only on ground-based or active radar, the ML-based model can provide enhanced coverage of the contiguous

3D cloud field, especially over remote oceanic regions (Prein et al., 2024). We merge the 3D radar reflectivities along their

temporal dimension to create a 4D time series used for further analysis.

3 Method

3.1 Tracking convective clouds in 4D130

In this study, we analyse the spatio-temporal evolution of convective clouds by employing the tobac package (Heikenfeld

et al., 2019). It is a modular Python-based package for tracking atmospheric objects in a 4D time series (Prein et al., 2024).
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Figure 1. Workflow for tracking convective clouds (a)–(c) and their convective cores (d)–(e) using 4D radar reflectivities. The routine consists

of (a) the identification and segmentation of convective cloud features using a threshold of–15 dBZ, (b) splitting elongated features along

their major axis, and (c) linking the labelled cloud features through time. For detecting DCCs, we apply a fixed threshold of -15 dBZ. In

(d), we apply a Median filter with a kernel size of 3x3x3 pixels to each 3D cloud field. Following, the approach includes (e) calculating the

number of contiguous pixels ≥ 0 dBZ for each vertical column and adding the cloud top radar reflectivity, to identify centroids of DCCs and

to apply a watershed segmentation algorithm to derive the associated area for each core.

In this study, we use the recently released version 1.5 of the software package (Sokolowsky et al., 2024). It preserves the

contiguity of the data in the horizontal and vertical dimensions, allowing an enhanced analysis of meteorological characteristics

in 3D. We merge the predicted radar reflectivity along the temporal dimension and feed the 4D time series into the tracking135

algorithm to create continuous trajectories. The workflow consists of three steps: detecting cloud features by their centroid’s

position, segmenting the associated cloud field for each centroid, and linking segmented objects through time (Figure 1, a-c).

We separate elongated cloud clusters if they are only connected by a few pixels in the horizontal and vertical dimensions to

avoid incorrect label assignments (Oreopoulos et al., 2017). This workflow is depicted in Fig. 1 and will be explained in the

following paragraphs.140
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3.1.1 Identifying cloud features

This study aims to reconstruct the cloud life-cycle from CI to the dissipation phase (Section 1). Although the radar reflectivity

does not directly measure vertical velocity, it can be used as a proxy for convective intensity (Luo et al., 2008). For the cloud

detection, we use a fixed threshold of -15 dBZ to differentiate signals from potential clouds and background noise within the

radar reflectivities (Marchand et al., 2008). The threshold is weakly restrictive and might lead to the integration of short-lived145

features in the results (Sokolowsky et al., 2024). Nevertheless, we keep this threshold to detect and track the spatio-temporal

evolution of convective clouds from CI to dissipation (Esmaili et al., 2016). At first, a Gaussian filter with a sigma filter

size of 0.5 smoothes the input data (Kukulies et al., 2021). Afterwards, contiguous regions are labelled, applying the same

threshold of -15 dBZ (Figure 1, a). The centroid of each feature is determined by the weighted mean of its position along three

spatial dimensions (Heikenfeld et al., 2019). All centroids are assigned a unique identifier that is kept during the following150

steps. Following, we use a watershed segmentation to delineate the 3D cloud field associated to each centroid. The approach

originates from geology and is used in image segmentation tasks. Here, the input data are treated as a topographic map divided

into individual catchments along adjacent ridges (Meyer, 1994). We feed the 3D radar reflectivity image with the detected

centroids into the watershed algorithm to delineate the pixels associated with each centroid (Jones et al., 2023). The value

of each pixel is decreased towards its local minimum using a threshold of -15 dBZ. The result is a labelled cloud mask for155

each time step (Fiolleau and Roca, 2013). In a 3D cloud field, the number of pixels per centroid represents the cloud volume

rather than the cloud area (Sokolowsky et al., 2024). In response, we calculate the aggregated 2D cloud anvil area using the

column-wise maximum for further analysis (Table 3).

3.1.2 Split shallow connected clouds

After identifying the cloud centroids and associated cloud area, we analyse the morphology of each object. The goal is to160

separate elongated objects connected only at the location of the local minimum width of the cloud anvil (Figure 1, b). To detect

these minima, we derive the best-fitting ellipse for each cloud (Ganetis et al., 2018). Then, we calculate the ratio between the

major and minor cloud axes. If the difference between the axes is higher than 75 %, we consider the cloud elongated (Cui et al.,

2021). The coordinates of the major axis give us the direction of elongation. Then, we determine the location of the split by

analyzing the aggregated 2D cloud area and the change points of the area distribution. We perform no split if the distribution165

is unimodal with a single maximum. Otherwise, we split the cloud if the local minimum diverges by more than 75 % from the

mean size of the cloud shield (Figure 1, b). We update the segmentation results by assigning an unique label to the separated

objects.

3.1.3 Spatio-temporal linking

We link the 3D objects through time based on their movement speed (Heikenfeld et al., 2019). In contrast to a 2D linking170

routine, the 3D perspective enables an in-depth analysis of both the horizontal and vertical evolution, which is crucial for

assessing the growth of DCCs (Fiolleau and Roca, 2013). For each 15-minute time step, we predict the movement of the objects
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based on their velocity in the previous time steps (Figure 1, c). We reduce the time needed for the search process by defining

a maximum spatial radius between two consecutive time steps. Within this radius, potential links are identified and clouds

are connected (Kukulies et al., 2021). Emerging clouds are assigned the average velocity of clouds in their neighbourhood175

(Sokolowsky et al., 2024). Due to limited computational resources, we only apply the linking for two consecutive time steps

simultaneously. A temporal overlap of 15 minutes and a contiguous identifier determine whether to merge tracks. Afterwards,

we check the cloud anvil area of linked objects to avoid false assignments. For that purpose, we apply a minimum area similarity

of at least 50 % (Prein et al., 2024). Depending on the features’ previous and subsequent movements, we estimate two objects

to merge together or split off and include this information in the derived trajectories.180

3.2 Detect convective core regions

After linking the trajectories, we apply a second detection algorithm to identify DCCs with a strong vertical ascent within

the cloud’s lower regions (Zipser and LeMone, 1980). A convective cloud typically contains one or more of these updraft

regions with heavy rainfall that translates through the freezing level (Igel et al., 2014). The growth and decay of DCCs in these

regions is particularly interesting for the intensity of convective clouds (Takahashi et al., 2017). In our study, we employ the185

ML-based radar reflectivity to identify the number and size of DCCs for each labelled cloud (Figure 1, d,e). We note that the

radar reflectivity cannot replace a calculation of the vertical velocity. However, it provides information on the distribution of

hydrometeors beneficial to estimate convective activity (Yuter et al., 2005; Luo et al., 2008). We mask reflectivities below -15

dBZ to detect convective core regions (Bacmeister and Stephens, 2011). Then, we apply a Median filter with a kernel size of

3x3x3 pixels to smooth the radar reflectivity (Tomkins et al., 2024). In our study, we identify a DCC in the 3D cloud field by a190

combined maximum of the column-wise aggregated radar reflectivity and the difference between the cloud top height (CTH)

and cloud base height (CBH) for a vertically contiguous cloud layer (cloud vertical depth) (Takahashi et al., 2017).

As visualised in Fig. 1e, we start with counting the number of pixels ≥ 0 dBZ in each cloud column to estimate the cloud

vertical depth (Tomkins et al., 2024). We expand the threshold from ≥ 0 dBZ to ≥ -5 dBZ if at least one pixel passes the first

criterion (Igel et al., 2014). The cloud column is discarded if the CBH is ≥ 5 km or if the vertical profile shows no convective195

pixels for more than 50 % of the CTH (Masunaga and Luo, 2016). Otherwise, we add the mean radar reflectivity of the vertical

profile to the derived vertical depth of the column (Oreopoulos et al., 2017). We search for local maxima of the combined

cloud vertical depth and radar reflectivity to identify centroids of potential DCCs. Then, we mask the DCC area by a watershed

segmentation. In case we find no maxima, the number of cores is set to zero (Feng et al., 2023). For all clouds with at least one

DCC, we calculate the number of cores, core area, core vertical depth, and core lifetime (Table 3). For more than one DCC, we200

additionally derive the mean distance between DCCs (Bacmeister and Stephens, 2011).

3.3 Extract cloud and core properties

For each trajectory along space and time for an individual detected object, we extract the associated cloud and core properties

as displayed in Table 3. While some of these properties can be derived from 2D data by analysing peaks in e.g., the IR spectra

of geostationary satellites, approximating the vertical column is often error-prone, e.g., when cirrus at the cloud top layer are205
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mistaken for deep convection. For instance, ground-based radar receive 3D data which can be used to assess the cloud vertical

structure. However, they deliver only few information about clouds developing over remote oceanic regions. Most passive and

active sensors lack the data coverage to enable a seamless analysis of the 3D convective cloud structure over different surface

types. Our approach allows for a more holistic perspective on cloud development over land and sea. We may derive horizontal

cloud properties, like the anvil area or cloud eccentricity, and vertically resolved properties, like the CTH, simultaneously210

(Table 3). Furthermore, analysing the structure of DCCs by our 3D data may deepen the insights on convective activity in

convective core regions. We employ the radar reflectivity at a fixed altitude of 10 km as a measure of convective activity. The

ratio between the major and minor cloud axes are used to calculate the eccentricity which describes the best fitting ellipse for

the cloud. Values range between 0–1, with higher values indicating a more spherical shape (Cui et al., 2021). For convective

clouds, the eccentricity may affect its hazard potential (Gallus et al., 2008). For example, linear convective systems are more215

prone to heavy wind and precipitation (Semie and Bony, 2020). Additionally, we calculate the ratio between the area of the

convective core and cloud anvil as a measure of convective strength and compactness (Haberlie and Ashley, 2018).

Table 3. Features used to describe the morphology, physical properties, and life-cycle transition statistics of convective clouds and cores.

Feature type Feature name Definition

Cloud

Cloud area Area of the cloud anvil (km2)

Cloud top height (CTH) Maximum height of the cloud (km)

Cloud base height (CBH) Minimum height of the cloud (km)

Area ratio Ratio between cloud anvil area & DCC area

Eccentricity Roundness of the best fitting ellipse (cloud)

Reflectivity Average radar reflectivity of the cloud at 10 km height (dBZ)

Location Longitude and latitude of the cloud centroid (°)

Travel distance Euclidean distance for coordinates at initiation and dissipation (°)

Cloud lifetime Lifetime of the cloud trajectory (h)

Surface type Value of the land-sea mask

Core

Number of cores Number of identified convective core regions

Core size Average size of convective cores (km2)

Core vertical depth Depth of the DCC in the vertical column (km)

Mean distance Average distance between DCCs in a cloud cluster (km)

Core lifetime Average lifetime of the DCCs (h)

Core eccentricity Roundness of the best fitting ellipse (core)

Life-cycle

Cooling Reflectivity change at 10 km height (dBZ)

Area growth Relative cloud area expansion (%)

Vertical growth Vertical growth of the cloud (km)
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Figure 2. Schematic visualisation of the three stages of the convective life-cycle. We show the changes of the cloud anvil areal and the radar

reflectivity at 10 km that induce a transition between convective initiation (CI), maturity (MAT), and dissipation. Additionally, we include

the vertical growth of convective clouds derived from the 3D radar reflectivites.

We divide the life-cycle of convective clouds in three phases and assess spatio-temporal changes of the cloud properties as

shown in Fig. 2. The first time step of the trajectory defines the beginning of the convective initiation (CI) (Futyan and Genio,

2007). For each point in time, we calculate the difference between the radar reflectivity at 10 km height at CI and the current220

time step to approximate the cooling of the convective cloud. Furthermore, the 3D data allows us to simultaneously derive the

vertical growth of the cloud. It describes the difference between the CBH and CTH at CI for each time step, compared to CI.

The highest difference of the radar reflectivity displays the maximum cooling and induces a transition between the CI and the

maturity phase (MAT) (Takahashi et al., 2023). During the MAT, the horizontal growth of the cloud anvil increases. The end of

the MAT is marked when the cloud anvil reaches its maximum relative size compared to the anvil size at CI. We further track225

the cloud until dissipation and we detect no more cloud centroid≥ -15 dBZ (Crook et al., 2019). For each trajectory, we derive

the point in time where transitions occur between life-cycle phases (maximum cooling, maximum anvil growth, maximum

vertical growth, dissipation). Additionally, we determine the point in time with the highest number of DCCs and maximum

DCC size to compare statistics for isolated and clustered clouds.

3.4 Filter convective cloud trajectories230

We filter the trajectories based on morphological and microphysical cloud properties (Section 3.3) to exclude non-convective

tracks from the analysis (Figure 3). We select all tracks that show at least one DCC and a reflectivity peak of≥ 0 dBZ at 10 km

height for at least 15 min along the trajectory (Igel et al., 2014). Additionally, we apply a minimum CTH of 10 km to account

for the typical convective properties within the tropics (Li et al., 2021). A maximum CBH of ≤ 5 km is used to discard clouds

without an evolved cloud base (Bacmeister and Stephens, 2011; Takahashi et al., 2023).235
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Figure 3. Criteria for filtering convective clouds from the derived trajectories. These consist of counting the number of convective cores

(A-D) for each cloud whereas we require minimum of ≥ 1 DCC to pass as a convective cloud. We check the cloud base height (CBH) and

cloud top height (CTH) of the cloud, and the radar reflectivity at 10 km height along the cloud trajectory.

4 Results

4.1 Evaluation of convective cloud trajectories

From March to August 2019, we detect 375 000 convective clouds. Figure 4 shows an example of the tracked DCCs and their

associated anvils. We observe a high number of convective clouds over the Gulf of Guinea, the equatorial rainforest, and the

Atlantic Ocean. As seen over Marocco and Mauretania, a high radar reflectivity at the cloud top does not necessarily indicate240

the presence of a deep convective system (Kukulies et al., 2021). In Fig. 4b–4e, we zoom in to observe the evolution of the

cloud systems in 3-hourly intervals. Our findings show that DCCs often persist only for a short time. Furthermore, we may find

several DCCs within MCSs at the same time which indicates a higher convective activity in the cloud cluster compared to the

presence of a single DCC (Takahashi et al., 2017).

We extract the 3D properties not only for the cloud anvil but also for each DCC. Our 3D perspective allows to track the245

cloud’s horizontal and vertical development simultaneously (Takahashi et al., 2023). To derive statistics for the DCCs, we

separate the core region from the anvil cloud, as visualised in Fig. 5.

We group the detected clouds based on the number of associated DCCs to differentiate isolated clouds with a single DCC and

clustered systems with multiple DCCs (Li et al., 2021). Clouds with 6–9 cores and those with ten or more cores are grouped

for the statistical analysis (Jones et al., 2024). Most of our trajectories (80 %) contain clouds with a single core (Figure 6, a).250

The proportion considerably declines with an increasing number of DCCs. Clouds with ten or more DCCs account for about

10 % of all trajectories. Figure 6b shows the lifetime grouped in 3-hourly intervals. Deep convection generally appears on a

wide range of scales, whereas most clouds are short-lived, with a lifetime of up to 3 h. For higher lifetimes, the proportion

of trajectories steadily decreases. The distribution of the surface type is analysed in Fig. 6c. About 70 % of our tracks are

located over sea and 30 % over land. Compared to the actual land surface distribution, we observe a shift of about 5–10 %255

towards the sea as convective systems in tropical Africa propagate towards the Atlantic Ocean. The difference between single-
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Figure 4. An example of convective clouds (orange outline) and their cores (red outline) detected by the tracking approach for the 03.05.2019

12:15:00 UTC. The cloud mask is plotted over the 3D radar reflectivity aggregated by the column-wise maximum. All times are given in

UTC. In (a), we see an overview of the AOI, (b) to (e) show a zoomed perspective in 3 h intervals (black square).

Figure 5. An example of the convective clouds (orange outline) and their cores (red outline) detected by the tracking approach for the

03.05.2019 12:15:00 UTC. The cloud mask is plotted over the 3D radar reflectivity aggregated by its cloud top maximum. In (a), we see an

overview of the AOI, (b) shows the zoomed perspective (black square) in 3D for the cloud volume (orange) and core volume (red).
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Figure 6. Cloud statistics for (a) the number of associated cores, (b) the average cloud lifetime on a logarithmic scale, and (c) the distribution

of the surface type derived from a land-sea mask compared to the location at CI for single- (1 DCC) and multi-core (> 1 DCC) clouds.

and multi-core clouds accounts for up to 5 % over each surface type. We observe slightly more isolated cells over continental

Africa and more clustered systems over the Atlantic Ocean. This finding emphasises we may find more favourable conditions

for the development of intense convective clusters over the ocean (Cui et al., 2021).

We analyse the distribution of the 3D cloud physical properties for different numbers of DCCs (Table 3). For isolated260

clouds with a single DCC, we observe a substantially shorter lifetime and travel distance than for clusters with several DCCs,

particularly for clusters with more than 10 DCCs (Figure 7,a–b). In contrast, the cloud eccentricity is less dependent on the

number of DCCs (Figure 7,c). For all groups, we see an eccentricity between 0.6–0.7, with only a singular peak at 0.8 for

single-core clouds. The cloud anvil area varies considerably stronger between each DCC group than the roundness of the

clouds. Most single-core clouds have an anvil area ≤ 1 000 km2. The area increases with the number of DCCs, especially for265

clouds with more than 10 DCCs (Figure 7,d). For instance, the anvil size and CTH are 10–20 % higher over the land than sea.

The radar reflectivity at 10 km height increases with the number of cores, in particular for highly clustered systems (Figure

7,e). It is on average 0.5 dBZ higher over the ocean than over land. Overall, differences in the intensity of convection are higher

between isolated and clustered clouds than for different surface types.

Moreover, our approach allows us to simultaneously investigate the core properties for isolated and clustered clouds. Figure270

8a shows the average core lifetime between initiation and dissipation. Long-lasting clouds are connected a longer core lifetime.

For single-core clouds, the core persists on average for 0.3–0.4 h. The core lifetime and eccentricity increase according to the

cloud lifetime in Fig. 8 to 1.2 h for clustered clouds. More and long-lasting cores come along a higher vertical depth (Figure

7,d). Over the sea, cores are more extensive for less clustered clouds. In contrast, the core size over land increases stronger with

many cores. This growth is induced by drier surface conditions and a higher lifting condensation level over land, promoting a275

stronger convective updraft (Takahashi et al., 2017). As the core area grows, the distance between the cores increases, especially

for convective clouds over land (Figure 8,e). The ratio between the core and anvil area depends on the number of DCCs and

the surface type. Overall, it is higher over the ocean (Figure 8,f). For clouds with ≥ 2 DCCs, the ratio lies at 10 % or less,

while we observe a ratio of 25 % for single-core clouds. An enhanced convective activity comes along with a lower area ratio,
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Figure 7. Cloud statistics grouped by the number of associated cores for (a) the cloud lifetime, (b) the travel distance from CI to dissipation,

(c) the cloud eccentricity, (d) the cloud anvil area, (e) the radar reflectivity at 10 km height, and (f) the CTH.

indicating a larger anvil outflow compared to the DCC size (Horner and Gryspeerdt, 2023). The core properties indicate on280

average a stronger convective activity over continental Africa, in particular when comparing highly clustered cloud systems.

4.2 Temporal characteristics of tropical convection

4.2.1 Diurnal cycle over land and sea

We compare the diurnal cycle for single-core and multi-core clouds over sea and land. Figure 9 shows the cloud lifetime,

the cloud anvil area, and the radar reflectivity at 10 km height. For isolated clouds over land, we see a peak for the radar285

reflectivity and the cloud anvil area beginning in the early afternoon (Figure 9,f,j). Continental clouds have a larger anvil area

and lower reflectivity compared to clouds over the ocean. This deviation may originate an enhanced local thermal instability

(Cui et al., 2021). During the afternoon, environmental conditions favour the initiation of convection over land. In contrast, a

more steady sea surface temperature is responsible for convective clouds developing over the ocean. Although the distribution
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Figure 8. Core statistics grouped by the number of associated cores for (a) the core lifetime, (b) the core eccentricity, (c) the core area, (d)

the vertical depth of the core, (e) the mean distance between individual cores, and (f) the area ratio between the cloud anvil and the core.

shows a bimodal diurnal cycle with two pronounced peaks in the night and late afternoon, the formation of DCCs over the290

sea can occur at any time of day due to their linkage to external forcing like cold pools (Chen and Houze, 1997). Between

midnight and early morning, a pronounced cooling over land reverses the land-ocean circulation. The radiative cooling at the

cloud top destabilizes the boundary layer and promotes the development of oceanic convection. After sunrise, incoming solar

radiation at the cloud top increases the stability and depresses the development of convection. With a weakened land breeze in

the morning hours, the nocturnal convective clusters over the ocean dissipate (Houze Jr., 2004). We observe this diurnal pattern295

for isolated clouds, in particular. Clustered clouds have a substantially larger anvil area and higher reflectivity at 10 km height

(Figure 9,g,h,k,l). Although the diurnal cycle is similar for clouds with multiple DCCs, the diurnal variability of the reflectivity

is smaller than for isolated clouds. Isolated clouds have a higher eccentricity than clustered clouds (Figure 9,a–d). Especially

during peak times over sea and land, we observe an enhanced axes ratio of up to 0.9. For both surface types, an increasing

number of DCCs induces a temporal shift of the afternoon peak within the radar reflectivities and the anvil area (Figure 9,k–l).300
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Figure 9. Diurnal cycle for cloud properties grouped by the number of associated cores and surface type. We display the hourly changes

regarding (a)–(d) the cloud lifetime, (e)–(h) the cloud anvil area, and (i)–(l) the radar reflectivity at 10 km height for single- (1 DCC) and

multi-core (>1 DCC) clouds over sea and land. The values show the density distribution of each parameter normalized between 0 and 1.

We use our data to estimate not only horizontally resolved cloud properties, but to also extract the 3D properties of the

DCCs. The diurnal pattern resembles those of the cloud properties. The core size, core lifetime, and core eccentricity show a

bimodal distribution over the sea and a singular afternoon peak over land (Figure 10,a–l). An increased number of DCCs comes

with larger cores and an enhanced lifetime, particularly for clouds over land. For clustered clouds over land, we see a second

maximum at night, which typically appears over sea surfaces. However, the afternoon peak is consistently more powerful305

(Figure 10,c–d). The core eccentricity of isolated clouds shows a higher variability and a lower mean than for clustered clouds

(Figure 10,i–l). The core and anvil area ratio shows a comparable primary peak between 0–0.1 for all types. Single-core clouds

have a secondary peak at 0.5, pointing out the simultaneous existence of clouds with different shapes and life-cycle phases

(Figure 10,m–p). Cores are more extensive and persistent over land, reflecting the contrast between convective intensity over

land and sea (Vondou, 2012).310
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Figure 10. Diurnal cycle for core properties grouped by the number of associated cores and surface type. We display the hourly changes

regarding (a)–(d) the core size, (e)–(h) the core lifetime, (i)–(l) the core eccentricity, and (m)-(p) the area ratio between the cloud core and

anvil area for single- (1 DCC) and multi-core (>1 DCC) clouds over sea and land. The values show the density distribution of each parameter

normalized between 0 and 1.
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Figure 11. Seasonal variability of cloud and core statistics between March and August grouped by the surface type for (a) the cloud anvil

area, (b) the CTH, (c) the cloud lifetime, (d) the number of DCCs, (e) the core size, and (f) the area ratio between the cloud anvil and the

core. We show the monthly mean (solid lines) and 7-day rolling mean (dashed lines) for the time series for single- and multi-core clouds over

land and sea.

4.2.2 Seasonal variability of convective clustering

Within the tropics, the seasonal cycle of atmospheric processes substantially affects convective cloud and core development

(Andrews et al., 2024). In Fig. 11, we calculate the monthly average and a rolling mean for a 7-day window for the cloud

area, the CTH, the number of DCCs per cluster, the core size, core lifetime, and the area ratio between cores and cloud anvils.

Overall, convective activity increases in summer by about 5–10 %. An enhanced core size and a decreased area ratio between315

cores and anvils accompany an increased average cloud anvil area. At the same time, the number of DCCs increases over the

ocean and decreases over the land. The CTH shows a bimodal distribution with peaks in May and July. We observe a higher

CTH, cloud lifetime, and area ratio over land throughout the depicted time series. The differences between land and sea are

less distinct regarding the number of DCCs, their size, and the cloud area.
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In Fig. 12, we compare the differences for the cloud and core properties over sea and land. For that purpose, we average320

the data on a monthly basis. The results are displayed in 3-hourly intervals. For most parameters, we observe that direction

changes occur on a seasonal basis. The diurnal variability show less distinct patterns than the seasonal changes. Continental

clouds have more extensive anvils and a higher CTH and cloud lifetime (Figure 12,a–c). However, oceanic clouds become

larger than clouds over land in summer (JJA) (Figure 12,a). Overall, the DCC properties show a higher seasonal dependency.

In spring, continental clouds come with more DCCs, larger cores, and a lower area ratio than cloud over the ocean (Figure325

12,d–f). In summer, the pattern reverses. This finding suggests that clouds appear more clustered over land in spring (MAM)

and the ocean in summer (JJA).

4.3 The influence of DCCs on the cloud life-cycle

We use the criteria defined in Sect. 3.3 to assess the transition between the three life-cycle phases dividing each cloud into a

growing, a mature, and a dissipation phase. We calculate for each cloud the maximum cloud cooling, maximum area expansion330

of the anvil, and the final dissipation of the cloud (Futyan and Genio, 2007). Moreover, the 3D data allow us to derive the

maximum vertical growth (Figure 2). We detect an average cooling (in terms of a change in reflectivity as depicted in Table 3)

of 10–14 dBZ at 10 km height (Figure 13,a). This cooling is enhanced for isolated clouds, particularly over the ocean, and over

land for clustered clouds with ≥ 4 DCCs. We derive the area growth of the cloud anvil after the time of the maximum cooling.

The average growth for all clouds accounts for 20–60 % compared to the anvil area at CI. We find the highest values for clouds335

with more than 5 DCCs. The vertical growth shows a reversed pattern as clouds with fewer DCCs tend to have a stronger

vertical growth between CI and the time of maximum cooling (Figure 13,c). For all clouds, the growth of the anvil and the

vertical growth are higher over land due to a more pronounced thermal instability and surface heating during the day(Takahashi

et al., 2017).

In Fig. 14, we compare the convective cloud life-cycle grouped by the number of DCCs. For that purpose, we derive the340

time of transition between the three life-cycle phases and the dissipation time for each group. Additionally, we include the

life-cycle of the cloud clustering by assessing the time when we find the most and largest DCCs. Overall, we observe a

broadening distribution and a shift towards a later occurrence for each phase with increasing numbers of DCCs. Multiple peaks

characterise the distribution for single-core clouds. In contrast, clustered clouds show a smoother uni- to bimodal distribution.

In all cases, the average time of maximum cooling and maximum vertical growth occurs before the maximum area growth.345

This finding indicates that the anvils continue growing beyond the time of maximum convective activity. All clouds reach their

maximum core size before the time of the maximum anvil area growth. In contrast to the core size, the time of the maximum

core number varies with the number of DCCs. For less clustered clouds, the time of the maximum core number and the

maximum vertical growth are similar. With a higher degree of organisation, the maximum number of cores appears after the

maximum area growth. The continuous interaction of convective cores within clustered clouds may prolong the life-cycle due350

to a regeneration of convective intensity (Takahashi et al., 2017). As the cloud lifetime increases with the number of associated

cores, the cooling and area growth appear earlier during the relative cloud lifetime. Clustered clouds spend more of their life-
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Figure 12. Differences between oceanic and continental cloud and core properties. Data is averaged on a monthly basis between March and

August and grouped in 3-hourly intervals for (a) the cloud anvil area, (b) the CTH, (c) the cloud lifetime, (d) the number of DCCs, (e) the

core size, and (f) the area ratio between the cloud anvil and the core.
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Figure 13. Life-cycle phase transition statistics grouped by the number of associated cores for (a) the maximum cooling at 10 km height, (b)

the relative area expansion, and (c) the vertical growth of the cloud.

cycle in a dissipating phase with a warming, shrinking anvil than a single-core cloud. As ≥ 80 % of detected clouds contain a

single DCC, these isolated clouds considerably affect the mean calculated for all clouds (Section 4.1).

In Fig. 15, we analyse the diurnal cycle for the maximum cooling, area growth, and vertical growth grouped by the surface355

type for isolated and clustered clouds. The distribution of these life-cycle statistics is similar to the diurnal convective cloud

development over land and sea (Cui et al., 2021). We observe a morning peak followed by a decrease in the afternoon for

the maximum cooling and vertical growth, particularly for single-core clouds. A subsequent anvil area growth follows cooling

phase (Figure 14). Over the ocean, we observe a weak diurnal cycle with a primary peak in the late afternoon and a secondary

peak at night. Overall, the vertical growth and absolute cooling are stronger for isolated clouds (Figure 15,a–c). Clouds with360

a single core show a reflectivity difference of up to 14 dBZ between CI and MAT and a vertical growth of 5.6–7 km. With an

increasing number of DCCs, the total cooling and vertical growth of each DCC decreases as prior convective activity already

induced a higher average radar reflectivity. In contrast, the anvil growth is on average 15 % higher for clustered systems. All

continental clouds show a maximum anvil growth in the early afternoon. Over the ocean, the diurnal peaks are weaker with a

slight shift towards the late afternoon and early evening (Figure 15,b,e).365

The seasonal cycle shows an increased cooling of about 2 dBZ and vertical growth of about 1–1.5 km between spring and

summer (Figure 16). For the area growth, we see an increase between 5–10 % for clustered clouds over land and sea and a

decrease of 3–10 % for isolated cells over land. Throughout the time series, the cooling and vertical growth are higher for

clouds with a single core. Clustered clouds have a weaker maximum cooling and vertical growth. However, they show a more

extensive area growth. A higher cooling, horizontal, and vertical growth of clustered clouds is associated with higher convective370

activity and more intense DCCs. While convective activity increases over the ocean in summer, we still detect more intense
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Figure 14. Ridgeplot showing the time dependency (x-axis) of the life-cycle phase transition statistics for (a) the maximum cooling at 10

km, (b) the maximum vertical growth, (c) the maximum anvil growth, (d) the maximum core size, (e) the maximum core number, and (f) the

dissipation time grouped by the number of cores. The vertical lines show the mean time for all clouds, the red triangles the mean for each

DCC group.
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Figure 15. Diurnal cycle for the indicators showing the transition between cloud life-cycle phases. The data is grouped by the number of

associated cores and the surface type. We display the hourly changes regarding (a) & (d) the maximum cooling, (b) & (e) the cloud anvil

area growth, and (c) & (f) the cloud vertical growth for single- (1 DCC) and multi-core (>1 DCC) clouds over sea and land. Line plots show

the mean value with a confidence interval of 95 %.
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Figure 16. Seasonal cycle for the indicators showing the transition between cloud life-cycle phases. The data is grouped by the number of

associated cores and the surface type. In (a) & (d), we show the maximum cooling, in (b) & (e) the anvil area growth, and in (c) & (f) the

vertical growth for clouds with a single (1 DCC) core or multiple (>1 DCC) cores. Line plots show the mean value with a confidence interval

of 95 %.

changes in the cloud life-cycle over land (Figure 15, 16). The difference may be due to a higher variability of the moisture

availability over land and an enhanced orographic forcing (Chen et al., 2021).

5 Discussion

Our analysis provides a detailed perspective on the temporal variability of deep convective cells and associated core regions375

derived from ML-based 3D radar reflectivities. In previous studies, retrievals of DCCs often originate 2D data, either from

geostationary satellites (Jones et al., 2024; Vondou, 2012) or from active radar, such as the CloudSat CPR (Igel et al., 2014;
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Takahashi et al., 2017). These approaches are limited to comprise either a specific horizontal or vertical dimension. As a result,

they cannot provide a seamless coverage of the cloud development. With geostationary satellites, we can approximate the

cloud vertical depth using the WV channels. However, the results may insufficiently differentiate between cirrus and convective380

clouds (Masunaga and Luo, 2016). Our study allows us to cover the cloud development along three dimensions. Compared to

the results by Takahashi et al. (2023), we detect a substantially higher number of cloud tracks with at least one DCC. With

the ML model, we have the potential to achieve global predictions of the radar reflectivity and reduce the false detection of

convective cells.

5.1 Regional influences on the cloud life-cycle385

Our results are consistent with measurements from cloud-penetrating aircraft (LeMone and Zipser, 1980) or the analysis of

precipitation data (Zipser et al., 2006). Clustered clouds regenerate their convective activity in response to the diurnal forcing

of surface heating (Futyan and Genio, 2007). Most MCSs initiate during daytime, which points toward the importance of

local surface characteristics for the propagation of convective organisation (Vondou, 2012; Takahashi et al., 2023). With the

onset of the WAM, convective systems may sustain through the night as the nocturnal surface cooling is reduced for clustered390

clouds (Futyan and Genio, 2007). The diurnal cycle of free-tropospheric relative humidity maximises at night over the tropical

oceans and alters convective activity. While a higher relative humidity reduces the entrainment into convective plumes, it allows

convective air parcels to maintain their buoyancy longer as they rise, producing deeper convective towers (Wall et al., 2020).

For instance, our results suggest a connection between the seasonal cycle of convection and the surface type. Convective storms

develop during the rainy season in the mountainous highlands and move into the basin at night when katabatic flow prevails395

(Nicholson, 2018). Within the AOI, convective activity frequently occurs. Developing clouds may travel large distances due

to a contiguous advection towards the Atlantic Ocean. However, quantifying the impact of local topography requires further

research. Thermal contrasts and diurnal circulation patterns drive the land-ocean differences (Li et al., 2021). We emphasise

that the interaction between DCCs affects the life-cycle of clustered convection substantially. A prolonged lifetime may induce

a repeated vertical updraft and area growth. Following the results by Takahashi et al. (2017) and Taylor et al. (2022), we observe400

more intense DCCs and increased growth of the cloud core and anvil for continental convection (Section 4.2.2). At the edges of

the AOI, extratropical effects may come into play and affect the cloud life-cycle (Jones et al., 2024). Disentangling the impact

of convective processes within the tropics and mid-latitudes remains a challenge and requires an extensive AOI.

5.2 Limitations and future challenges

The input data for the ML model originate from the CloudSat satellite, which lacks sensitivity to observe ice clouds due to an405

underestimation of the topmost outflow height (Wang et al., 2014). Our results show this limitation in terms of a weak repre-

sentation of shallow convection and cirrus clouds. Recently released instruments like the flexible combined imager (Holmlund

et al., 2021) aboard the Meteosat Third Generation (MTG) satellite system or the spatio-temporal enhanced CPR of the Earth

Cloud Aerosol and Radiation Explorer (EarthCARE) mission (Eisinger et al., 2024) have a higher spatial and temporal resolu-

tion. The data may allow for a more accurate detection of clustered MCSs and small-scale changes during their life-cycle. In the410
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current study, we did not examine some presumably important influences like the effect of aerosols, the vertical wind shear, or

the entrainment rate (Masunaga and Luo, 2016). Including these factors may help to further understand the drivers of convec-

tive organisation. We chose the tobac framework to detect isolated and clustered convective clouds (Sokolowsky et al., 2024).

Nevertheless, we note that no universal detection algorithm exists (Lakshmanan and Kain, 2010). Instead, every algorithm has

specific benefits and limitations depending on the use case and study area (Prein et al., 2024). Despite our ability to achieve415

an approximation of the vertical updraft by the radar reflectivity, it cannot replace a calculation of vertical wind shear (Luo

et al., 2008). Although the effect of vertical shear within the tropics is expected to be minor compared to the mid-latitudes, its

quantification requires further analysis (Takahashi et al., 2017). Moreover, investigating precipitation patterns associated with

clustered convection could lead to a more accurate forecast of extreme events (Kukulies et al., 2021). However, further research

is required to sufficiently assess the present and future risks associated with MCSs (Atiah et al., 2023).420

6 Conclusions

This study analysed the life-cycle of convective clouds and their deep convective cores over West Africa. Using an ML-based

extrapolation of radar reflectivities, we could detect and track convective clouds in 3D throughout all stages of the cloud life-

cycle. Compared to using data from a single sensor, our perspective allows a simultaneous coverage of cloud development in the

horizontal and vertical dimensions. Tropical convection appears more intense over land than over the ocean. Over continental425

Africa, we find more long-lasting clouds with multiple deep convective cores. Within these clouds, core interactions impact

the intensity and lifetime of the cloud cluster and its life-cycle. Overall, we detect substantial seasonal differences for clouds

over both surface types. Convective activity increases in summer, particularly for clustered clouds over the ocean. However,

changes in the cloud life-cycle, like the anvil area growth, remain stronger over land during the whole period. With a higher

degree of organisation, the interaction of adjacent cores may drive a renewal of convective activity. This leads to a a prolonged430

cloud life-cycle and a later occurring maximum number of DCCs. Isolated convective cells have a higher cooling and more

extensive vertical growth than clustered clouds. Nonetheless, they persist predominately for a short time and show weaker

convective activity than clustered systems. In this work, we use the number of convective cores as a single proxy for convective

organisation. However, it may be worth comparing these results to a quantification of organisation using more advanced metrics,

as done in the accompanying manuscript. The analysis shows a high variability and ambiguous results over different surface435

types, in particular during the summer season. Expanding the analysis by an investigation of spatial patterns of convective

organisation may account for current uncertainties induced by a surface type specific seasonality.

Code and data availability. The level 2B-GEOPROF CloudSat data used in this study are available at the CloudSat Data Processing Center

at CIRA/Colorado State University and can be retrieved from http://www.CloudSat.cira.colostate.edu/order-data (CloudSat Data Processing

Center, 2024). The Meteosat SEVIRI level 1.5 data used in this study is freely and openly available via the EUMETSAT Data Store at440

https://navigator.eumetsat.int/product/EO-:EUM:DAT:MSG:HRSEVIRI (EUMETSAT Data Services, 2024). The code used in this study

will be released upon publication.
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